

Outcomes of SmartCrete CRC Industry meets Academia Workshops November 2018

A CHALLENGE TO "BUSINESS AS USUAL"

Engineered Solutions

Accelerated Innovation Pathways

Provision of innovation pathways to accelerate improvement in cost, application, durability and performance of concrete.

Program Concepts:

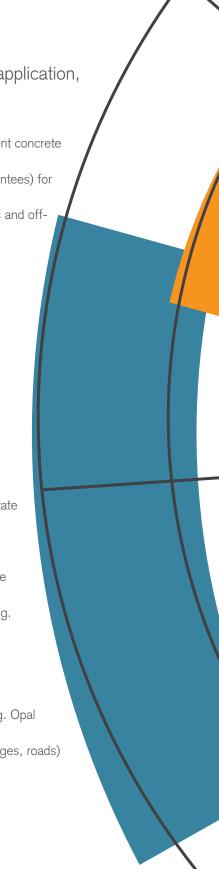
- Step change performance improvements in FRC and High-Performance Concrete over current concrete to enable new construction methodologies and lower costs
- Development of accelerated innovation pathways (e.g. quality assurance, performance guarantees) for concrete via an integrated Australian Standards methodology to facilitate industry innovation
- Development of Advanced self-compacting slabs to support new construction methodologies and offsite manufacturing.

Example Research Projects:

- New formula FRC and High-Performance Concrete. Fast track Australian Standards Modifications
- New formula Self-compacting slabs
- Advanced modular structures development.

Asset Management

Intelligent Assets


The use of big data to cost effectively evaluate, monitor and manage infrastructure and the urban environment.

Program Concepts:

- Development of a standardised bank of robust asset management evaluation criteria to facilitate significant project life cycle improvements
- Predictive asset management via AI and Big Data via linear monitoring and sensing of urban infrastructure (e.g. transport, utilities, infrastructure)
- Substantial reduction in the cost and durability of sensing and monitoring equipment to enable large scale proactive asset management
- Development of integrated systems and process to enable substantial disruptive transport (e.g. road, rail) productivity improvements.

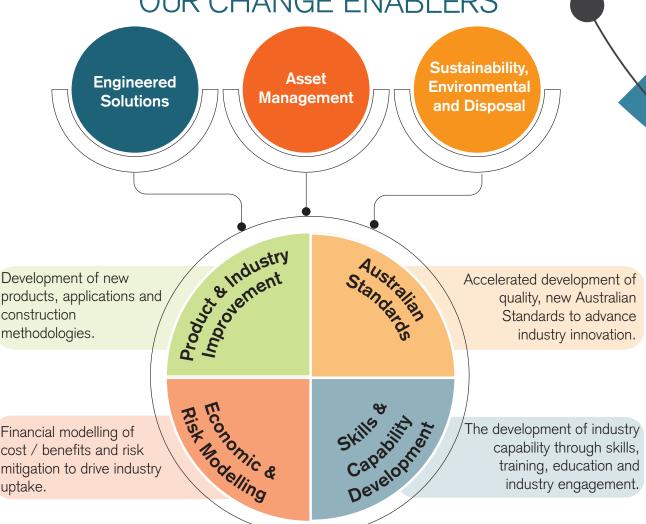
Example Research Projects:

- Short and long-term monitoring of structures
- Standardised predictive modelling of project lifecycle
- Embedded sensors to monitor buildings during commissioning phase and loading phase -(e.g. Opal Tower)
- Embedded sensing and monitoring of infrastructure over lifetime (e.g. sewerage pipes, bridges, roads)
- Automated Compliance Quality monitoring on-site of precast elements
- Faciliation modelling for integrated transport data management.

Sustainability, Environmental and Disposal

Supply chain sustainability

Provision of innovative manufacturing methods and alternative material in a quality, cost effective, sustainable supply chain.


Program Concepts:

- Documentation and quantification of the sustainability of the concrete supply chain to future proof the
- Development of viable alternative materials (e.g. cement, aggregates, sand) based on quality, cost effectiveness, process engineering and sustainable supply.
- Exploration and commercialisation of new material supply sources from the existing urban waste stream.
- Development of alternative manufacturing and construction methodologies to substantially reduce transport and site costs.
- Accelerated adoption of recycled concrete via the development of differential concrete formulations for low performance environments (e.g. Bikeways).

Example Research Projects:

- Financial modelling of supply chain logistics.
- Replacing dwindling resources (e.g. fly ash and beach sand)
- Use of sustainable alternative materials (e.g. glass, plastics, rubber, synthetic aggregates)
- Reducing supply chain, transport and site costs.
- Reformulation of low cost, low performance concrete.

OUR CHANGE ENABLERS

